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ABSTRACT: Facile graph theoretical MO solutions are demonstrated. The dihedral angles between the azulene units
at the bridging bond in biazulenes were determined by MM2 calculations. Polyazulenes are predicted to be conductive
only via the polaron mechanism. Polaron conduction in 1,3- and 2,6-polyazulene is qualitatively predicted to be more

facile than in 4,8- and 5,7-polyazulene. Copyright © 2007 John Wiley & Sons, Ltd.

KEYWORDS: biazulene; polaron conduction; molecular orbital calculations

INTRODUCTION

Azulene (C;gHg) is probably the smallest isolable organic
compound having an intense color (blue). Naphthalene,
its closest isomer, is colorless. This fact alone is
responsible for the considerable interest in azulene.'
Also, azulene is a nonalternant hydrocarbon (nonAH) and
naphthalene is an alternant hydrocarbon (AH). AHs have
no odd size rings and obey the pairing theorem, whereas
nonAHs do not obey the pairing theorem and are
invariably more polar than their AH isomers.” The
Ullmann reaction has been used to synthesize
2,2’-biazulene and related isomers.> HMO calculations
have also been performed on 2,2’-, 4,4°-, and 5,5’-
biazulene.* Treatment of a 4:1 mixture of 1-bromo- and
1,3-dibromoazulene with NiBr,(PhsP),, Zn, and Et,;NI
gave biazulene, terazulene, and quarterazulene; reductive
coupling of 1,3-dibromoazulene gave polyazulene.” Thus
intensely colored 1,3-polyazulene oligomers (Fig. 1) have
been synthesized. The synthesis of 1,3-polyazulene was
accomplished by reacting 1,3-dibromoazulene with
Ni(COD), and was characterized as having an average
molecular weight corresponding to 130 azulene units.°
The 'H NMR and FT-IR spectra of 1,3-polyazulene show
signals similar to azulene. 1,3-Polyazulene was made
significantly conductive by exposure to iodine or
trifluoroacetic acid vapor for several days. Protonation
of 1,3-polyazulene by trifluoroacetic acid followed by
oxidation was found to exhibit high conductivity and
paramagnetic properties via formation of cation radicals
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(polarons). The electronic structure of 1,3-polyazulene
has been studied by the SCF method for both its neutral
and oxidized states.” These calculations suggested that
positive net charges of the oxidized states are mainly
localized in the seven membered rings and that in the
polaron state the charge and spin parts are in separate
rings of azulene unit. While 1,3-polyazulene has been
extensively studied, the remaining symmetrical poly-
azulene polymers have not yet been considered (Fig. 1).

The current objective is to study the relative electronic
properties of symmetrical biazulene and polyazulene
isomers. Using graph theoretical methods, the electronic
properties of polyazulenes presumed to have coplanarity
between their azulene units are first computed. Then the
dihedral angles between the two bridging azulene units of
the biazulene isomers are determined by MM2 calcu-
lations. These dihedral angles are used to model
noncoplanarity of the various polyazulene isomers. The
electronic properties of the polyazulenes in which the
azulene units are coplanar versus those having their
azulene units uniformly twisted are compared.

RESULTS AND DISCUSSION

Facile calculation of the molecular orbitals
(MOs) of azulene

The eigenvalues (energy levels) of azulene are given
in Fig. 2 which shows the antisymmetric (right-hand
mirror-plane fragmentation)® and symmetric eigenvalues
(deduced from the algorithmic application of this equation:
-XCy,+ C;+ Ciy+ C;, =0 per Fig. 3).? From the results in
Fig. 2, it is apparent that the irreducible substructure
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2,6-polyazulene

1,3-polyazulene

4,8-polyazulene

5,7-polyazulene

Figure 1. Polyazulene polymers in a linear staggered conformation
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Figure 2. The irreducible subgraph and the lefthand mirror-plane fragment of azulene are identical

determined for symmetrical eigenvectors and the left-hand
mirror-plane fragment both give the same eigenvalue set.
Here it is important to note that the number of eigenvalues
in the right-hand fragment (McClelland subgraph) is equal

Copyright © 2007 John Wiley & Sons, Ltd.

to the number of antisymmetric eigenvalues. Both
mirror-plane fragmentation and the equation in Fig. 3
lead to computational simplification by exploiting the C,,
symmetry of the azulene unit in polyazulene.
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general vertex u

—XiCiy + Cip+ Ci5s+ C; =0

Figure 3. The general relationship for any given molecular
graph vertex u and its eigenvector coefficient G, for any
ith eigenvalue X; belonging to the molecular graph

Facile molecular orbital (MO) solution of
conjugated polymers

The methodology used for solution of azulene above
(Fig. 2) will be employed in the determination of
the symmetrical eigenvalues for conjugated polymers.
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The recursive application of the above equation (Fig. 3)
on the monomeric unit of conjugated polymers was
shown to coincide with the density of states as determined
via the method of Hosoya and coworkers.”'® In this
paper, Hosoya and coworkers noted that because of a
theorem which states that the density of states is
independent of the boundary condition,'! it is standard
practice to use cyclic boundary conditions for the analysis
of linear polymer systems. These workers demonstrated
that the presence of a zero HOMO — LUMO band gap in
certain classes of polymer networks is predicted by the
existence of non-bonding MO (NBMO) in their
hypothetical cyclic monomer (k=0) or dimer (k=0,
1), with the cyclic monomer being equivalent to the
Hiickel cyclic unit and the cyclic dimer being equivalent
to the Mobius cyclic unit.'> While the eigenvalues of the
Hiickel cyclic monomer (k=0) are present in all cyclic
sizes and thus the infinite cyclic polymer strip, the
eigenvalues of the Mdbius cyclic unit corresponds to the
Hiickel cyclic dimer (k=0, 1) exclusive of the
eigenvalues for k=0 and are present in the cyclic dimer
(2km/n =2m/2 = 1), all even cyclic units, and the infinite
cyclic polymer strip 2km/n =2(co — 1)m/oco =m]. It was
shown that recursive application of the equation in Fig. 3
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Figure 4. Huckel cyclic monomers (k=0) of 2,6-, 1,3-, 4,8-, and 5,7-polyazulenes and their characteristic polynomials where

looped bond has a weight of 1
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gives the symmetric eigenvalues characteristic to the
Hiickel (monomer, k£ = 0) cyclic unit,” and herein it will
be shown that this equation can also be adapted to give the
symmetric eigenvalues characteristic of the Mdbius
(dimer, k=1) cyclic unit.

Facile solution of the cyclic monomer and
dimer of various polyazulenes

The characteristic polynomials for the Hiickel cyclic
monomer (k= 0) and the Mobius cyclic monomer (k=1)
for the polyazulenes in Fig. 1 are given in Figures 4 and 5,
respectively. These characteristic polynomials and corre-
sponding eigenvalues are for planar conformations of the
polyazulens in Fig. 1. In the following, we will detail
facile solutions to the symmetric and antisymmetric
eigenvalues corresponding to these molecular systems.
We will see that for nonAHs, the symmetric eigenvalue
singular points for the density of states belonging to
the band gap was given by the cyclic monomer
(Hiickel cyclic monomer) for infinite 1,3-, 4,8-, and

-2.0

&
g

-1.7650
-0.61803
—0.4073

5,7-polyazulenes but for infinite 2,6-Polyazulene it was
given by the cyclic dimer (Mobius cyclic monomer).
The equation in Fig. 3 will be deployed to obtain the
symmetric eigenvalues for the Hiickel cyclic monomers
and Mobius cyclic monomers, where the latter application
is new; here it needs to be stressed that the eigenvalues of
the cyclic monomer (k= 0) are present in all cyclic sizes
and the eigenvalues of the Mobius cyclic monomer are the
eigenvalues present in the Hiickel cyclic dimer (k=0 and
1) exclusive of those for k = 0. Figures 6 and 7 give all the
corresponding symmetric eigenvalues for these mono-
mers and dimers, respectively. To adapt the application of
the equation in Fig. 3 to Mobius cyclic monomer systems
(Fig. 5), it needs to be noted that looped bond has a
negative weight, thus accounting for the minus sign for
the symmetric eigenvector coefficient in Fig. 7. For Fig. 6,
a number of points should be noted. First, since these
eigenvalues are present in all cyclic sizes, the smallest
negative eigenvalues (—0.3910, 0, and —0. 37758) in 1,3-,
4.8-, and 5,7-polyazulene (last three mers) correspond to
the LUMO of these infinite (and finite) systems; these
negative eigenvalues are smaller than the negative
eigenvalues present in Fig. 7. Second, the repeat unit

X0 - 12X3 + 48X0 - 2X5 - 70X* + 10X +26X2 - 6X - 1=0
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Figure 5. Mobius cyclic monomers (k= 1) of 2,6-, 1,3-, 4,8-, and 5,7-polyazulenes and their characteristic polynomials where

the looped bond has a weight of —1
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Figure 6. Solution of the Huckel (k= 0) repeat unit of polyazulenes recursively using the equation in Figure 3 to obtain the

symmetric eigenvalues

for 4,8-polyazulene (third mer from the top in Fig. 6) has
distinct paired eigenvalues of i\/ 3, 1.0, and 0 B and
complementary eigenvalues of 3(,/1741) which are
present in all cyclic sizes. Recursive application of the
relationship’ given in Fig. 3 allows us to easily obtain
the corresponding eigenvectors for these eigenvalues
which we will now illustrate. These eigenvalues belong to
symmetrical eigenvector set. Consider the third structure
in Fig. 6. Starting with the zero eigenvalue (X=0), the
sum of the coefficients at position ¢ must sum to zero
(b4 b=0) and comply with the C, symmetry axis which
means that »=0. For position b, the sum of the
coefficients is @ + ¢ = 0 or ¢ = —a. Proceeding to position
¢, we obtain b+ c+d=0 or c =—d and d = a. Going to
position d, we obtain ¢ + e +d =0 or e =0, and finally for
position e, we obtain d + f=0 or f= —a. Assigning a = 1
gives the unnormalized eigenvector (First structure in
Fig. 8) for the zero eigenvalue of 4,8-polyazulene.
Application of this recursive procedure for the
eigenvalue of one (X=1) in the 4,8-polyazulene mer

Copyright © 2007 John Wiley & Sons, Ltd.

(Fig. 6) is further illustrative, since the use of the equation
in Fig. 3 will require one additional parameter. The
recursive application of this equation while noting proper
symmetry, one can easily determine the corresponding
symmetrical eigenvector coefficients for integer and surd
eigenvalues. Starting at position a, we obtain —a 4+ 2b =0
or a=2b. Proceeding next to position b, we obtain
a — b+ c=0 or c=—b. Going to position ¢, we obtain
—c+b+c+d=0 or b=—d. Operating on position d
gives — d+c+d+e=0 or e=b. Finally, operating on
position e gives —e +d 4 f= 0 or f=2b. Setting b = 1 gives
the eigenvector coefficients shown in Fig. 8 (2nd structure).

The right-hand fragment (McClelland subgraph) in
mirror-plane fragmentation gives the antisymmetric
eigenvalues of the corresponding molecular graph.
Figures 9 and 10 give the mirror-plane fragments to
all the respective cyclic monomers in Figures 6 and 7
and their corresponding antisymmetric eigenvalues.
The McClelland subgraphs with characteristic poly-
nomials and corresponding eigenvalues for the Hiickel

J. Phys. Org. Chem. 2007; 20: 395-409
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Figure 7. Solution of the Mobius (k= 1) repeat unit of polyazulenes recursively using the equation in Figure 3 to obtain the
symmetric eigenvalues

X=1

Figure 8. Select symmetric eigenvectors for 1,3-, 4,8-, and 5,7-polyazulenes computed using the relationship given in Figure 3
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Figure 9. Right-hand mirror-plane fragments (McClelland subgraphs) for the Hickel cyclic monomers given in Figure 4

cyclic monomers in Fig. 9 can be found in Table 2.1 of
reference . As it is evident form the first structure in
Figures 9 and 10, both the Hiickel and Mobius cyclic
monomers for 2,6-polyazulene have the same McClelland
subgraph making the cyclic dimer doubly degenerate in
these eigenvalues.

The only polyazulene in Fig. 1 that can be mirror-plane
fragmented is 2,6-polyazulene (top structure). In fact,
2,6-polyazulene has multiple McClelland subgraphs, one
for each mer and this subgraph is the right-hand fragment
shown in Fig. 2 for azulene (—2.0953, —0.7376, 0.4773,
and 1.3557p). Thus, 2,6-polyazulene is highly degenerate
in these eigenvalues, and this does not change even for
large dihedral angles between the mers. The bandgap for
planar 2,6-polyazulene (zero dihedral angle, ¢=0°
between the mers) is HOMO — LUMO=0.4773 —
(—0.1144)=0.5917p. For all the polyazyulenes in
Fig. 1, it can be generalized that all the corresponding
HOMOs will have antisymmetric eigenvectors and all the
LUMOs will have symmetric eigenvectors. Table 1
summarizes the bandgaps for all the planar polyazulenes.
2,6-Polyazulene is most unique of the polyazulenes listed

Copyright © 2007 John Wiley & Sons, Ltd.

in Fig. 1 in five distinct ways. First, 2,6-polyazulene has
the same HOMO (=0.47738) regardless of its dihedral
angle. Second, its bandgap is determined by its cyclic
dimer (Mobius cyclic monomer) while the other
polyazulenes have their bandgaps determined by their
cyclic monomer (Hiickel cyclic monomer). Third, for a
strip with its azulene units in a coplanar conformation, its
point group symmetry would be C,, while the other
polyazulenes would belong to the Cg point group
symmetry in their planar conformations. Fourth, the
polymerization axis coincides with the monomer sym-
metry axis. Fifth, its monomeric units have head-to-tail
dipole alignments (azulene has a gas phase dipole
moment of 0.8 D).

Dihedral angles in biazulene isomers

We will now determine the effect of nonplanarity of the
azulene mers on eigenvalues polyazulene strips in Fig. 1.
In order to model this conformational effect, the dihedral
angles between neighboring azulene units in the relevant

J. Phys. Org. Chem. 2007; 20: 395-409
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Figure 10. Right-hand mirror-plane fragments (McClelland subgraphs) for the Mdbius cyclic monomers given in Figure 5

Table 1. Polyazulene HOMO - LUMO bandgaps

Bandgap () for Dihedral ~ Bandgap
Polyazulene  Dihedral Angle of 0°  Angle, ° B
2,6- 0.5917 31.45 0.6261
13- 0.3910 425 0.4919
5,7- 0.4142 54.1 0.7461
4.,8- 0.6725 73.4 0.7373

isomeric biazulenes (Fig. 11) were determined via
molecular mechanics (MM2). The dihedral angles for
1,3-, 2,6-, 4,8-, and 5,7-biazulene are ¢ =42.5°, 31.45°,
73.4°, and 54.1°, respectively. These results are consistent
with ab initio calculation of the dihedral angles between
neighboring benzene units in biphenyl and terphenyl
which ranges from 39.6°-52.2° depending on the basis

4 The magnitude of these angles is indicative of their
relative steric/torsional strain energy. In Table 2 there is a
parallelism between this steric/torsional energy for the
2,1'-, 2,5'-, and 2,4'-biazulenes where the 2-position of
one azulene unit moves consecutively to the positions of

Copyright © 2007 John Wiley & Sons, Ltd.

1’,5’, and 4’ and the 1,1’-, 5,5'-, and 4,4’- biazulenes. It is
seen from Table 2 that the first set of three biazulenes
where the position of one azulene unit is held fixed are
less sterically hindered as measured by both the
corresponding smaller dihedral angle and bridging bond
length than the second set of three biazulenes in which the
respective positions are doubled-up. In other words, by
holding the position of one azulene unit constant in the
first set of biazulenes, we are probing the relative steric
hindrance of positions 1, 5, and 4.

This order for the bridging bond lengths (Table 2) of the
1,1°-,5,5’-, and 4,4’-biazulene is also consistent with the
above the magnitude of the azulene HOMO normalized
coefficients for position 1, 5, and 4 which are 0.5428,
0.3355, and 0.1601, that is, formation of 1,1’-biazulene
from azulene involves the largest HOMO coefficient
value leading to the strongest interaction and shortest
bridging bond length and formation of 4,4’-biazulene
involves the smallest HOMO coefficient value leading to
the weakest interaction and longest bridging bond length.

Because Imamura and coworkers'* determined that the
dihedral angle for neighboring benzene rings in biphenyl
to hexaphenyl were almost uniformly 39° down the chain,

J. Phys. Org. Chem. 2007; 20: 395-409
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e
S5

Figure 11. All possible biazulene isomers

Table 2. MM2 calculated dihedral angles and intervening
bridging bond of various biazulenes

Dihedral Bridging Bond
Biazulene Angle, ° Length, A
1,2/ =21 38 1.469
2,5’ 39.8 1.482
2.4 49.8 1.487
1,3 =1,1" 42.5 1.471
5,7 =55 54.1 1.503
4.8' =44 73.4 1.510

we now assume that the above MM2 calculated dihedral
angles (also, confer with Table 1) for the biazulenes apply
uniformly throughout the chains for the polyazulenes
given in Fig. 1. Thus the bridging bonds in these
polyazulenes are weighted according to the cosine of the
corresponding dihedral angles. This assumption gives cos
90°=0 resulting in these polyazulene chains having
azulene units being in perpendicular conformations
with zero orbital overlap between adjacent azulenes.
The resulting orthogonal molecular orbitals produce
highly degenerate eigenvalues corresponding to the
eigenvalues of azulene as a logical consequence. Using
cos 42.5°=0.7373, cos 31.45°=0.8531, cos 73.4° =
0.2857, and cos 54.1° =0.5864 as the weights of the
bridging looped bonds for the cyclic Hiickel and Mobius
monomers of 1,3-, 2,6-, 4,8-, and 5,7-polyazulenes,
respectively, give the characteristic polynomials and
corresponding eigenvalues presented in Figures 12
and 13, respectively, in analogy to Figures 4 and 5.
The bandgaps in Table 1 show that as the dihedral angle
increases so do the bandgaps. The maximum dihedral
angle of ¢ =90° which results in perpendicular azulene
monomer units will give a maximum bandgap of HOMO

Copyright © 2007 John Wiley & Sons, Ltd.
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— LUMO =0.87778 belonging to azulene for all the
polyazulenes in Fig. 1. A major conclusion at this point is,
regardless of the dihedral angle, all the polyazulenes in
Fig. 1 have significant band gaps (i.e., the order of
or greater than the HOMO - LUMO =0.4394 g for
pentacene) and therefore cannot exhibit metallic con-
ductivity. Thus any conductivity associated with
polyazulenes must derive via polymer doping and the
resulting polaron mechanisms.

Polaron model for conduction in polyazulenes

According to simple band theory the continuum of
occupied MOs of neutral molecules correspond to the
valence band, the continuum unoccupied MOs corre-
spond to the conduction band, and the void between these
two bands represents the band gap which corresponds to
the HOMO — LUMO where HOMO corresponds to the
upper valence band edge (Fermi energy level) and the
LUMO corresponds to the lower edge of the conduction
band. A wide band gap leads to an insulator material, a
narrow band gap leads to a semiconductor material
because at room temperature thermal excitation of
electrons from the valence band to the conduction band
promotes conduction, and a zero band gap (HOMO -
LUMO =0) leads to high conductivity characteristic of
metals because the electrons are thermally distributed at
the interface between the adjacent valence band and
conduction bands. Conductive polymers conduct current
without having a zero band gap by mechanisms involving
polarons, bipolarons, and solitons. Polarons, bipolarons,
and solitons are generated in conjugated polymers by
doping processes. Oxidation is called p-doping and
reduction is called n-doping. In the doped form, the
polymer backbone is either positively or negatively

J. Phys. Org. Chem. 2007; 20: 395-409
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X0 - 11.728X3 + 46.094X° — 2X5 - 73.873X* + 2.588X° +
46.332X% + 1.4124X - 8.140 = 0

X0 - 11.544X8 - 1.475X7 + 43.331X° + 8.322X° — 62.712X* —

X'10—11.082X% +41.0X° —2.571X° — 59.939X* + 8.449X> +

X10—11.344X8 — 1.173X7 + 43.407X°® + 6.210X° — 66.299X* — 7.386X>

—2.1625 04773
—2.0953 1.1963
-1.3104 1.3557
-0.7376  1.4890
—0.6591  2.4452
0.7373
14.644X3 +30.381X% +7.935X — 1.051=0
—2.2311 0.0981
-1.8274 0.9745
-1.2904 13116
09158 1.7516
-0.3938  2.5227
0.2857
29.531X2 - 4.041X —2.857=0
—2.1671 0.4616
-1.8151 0.9159
-1.5756 1.2313
-0.8122  1.6729
02757 2.3639
+37.067X2+1.518X —4.0=0

—2.1378  0.3587
-1.7490 09115
—1.4484  1.2424
-1.0499  1.8726

0.5864 -0.3874 23872

Figure 12. Huckel cyclic monomers (k =0) of 2,6-, 1,3-, 4,8-, and 5,7-polyazulenes and their characteristic polynomials where

looped bond has the weight indicated

charged, and the small counterions derived from the
dopants, such as I5 or Na™, act as bystanders that do not
influence the electrical properties directly.'® Polarons are
normally bound to oppositely charged counterions so that
polaron conduction involves electron or hole hopping
from the region of one counterion to another. This
conduction is influenced by both counterion density
(concentration) and mobility (temperature).

When an electron is removed from the top of the
valence band of a conjugated polymer, a vacancy (hole or
radical cation) is created that does not delocalize
completely as expected from band theory. Only partial
delocalization occurs, extending over several monomeric
units causing this region to structurally deform. The
energy level associated with this radical cation gives a
destabilized MO thrusted into the band gap region
(Fig. 14). This rise in energy is similar to the rise in energy
that takes place after removal of an electron from a filled
bonding MO. A radical cation that is partially delocalized
over some polymer segment is called a ‘polaro’. It
stabilizes itself by electrostatically polarizing the medium
around it. The polaron has associated with it localized
electronic midgap states.

Copyright © 2007 John Wiley & Sons, Ltd.

If another electron is removed from a polymer
containing a polaron, either another polaron can form
in a different segment of the polymer chain or a
‘bipolaron’ can form if the electron is removed from
the vicinity an already existing polaron. Low doping
levels give rise to polarons and high doping levels can
produce bipolarons. The two positive charges of a
bipolaron act as a pair. Both polarons and bipolarons are
mobile and can move along the polymer chain by
rearrangement of the double and single bonds in the
conjugated system that occurs in an electric filed; the two
positive charges of a bipolaron move in unison. If high
doping forms a large number of bipolarons, their energies
can start overlapping at the edges creating a narrow
bipolaron band in the band gap region. The polaron has a
spin of 1 and the bipolaron, in compliance with the Pauli
exclusion principle, has a spin of zero, that is, it is
spinless. In infinite polyacetylene, which to the zero-order
approximation would have a degenerate ground state, the
bipolaron dissociates into two nearly independent cations
because of Jahn—Teller distortion, which are also spinless
and are called ‘solitons’. Solitons do not form in polymers
with nondegenerate ground states.
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X0 - 11.728X" + 46.095X°® — 2X° — 67.049X* + 9.412X3 + 25.857X> -
5412X - 1.315=0
-2.0953 04773
-2.0210  0.5670
~0.8531 -1.6796 13557

-0.7376  2.0112

-0.1488  2.2699
-0.7373

X0~ 11.543X8 + 1.475X7 + 46.280X° — 12.322X° — 74.509X* +
26.644X3 +39.229X2 - 9.760X — 6.949 = 0

21102 0.7816

—2.0240  0.8947

—1.7481 1.4942

-0.6404  1.5612

-0.4057 2.1966
-0.2857

X0 - 11.082X8 + 42.143X0 — 1.429X° — 64.51X* + 3.878X> + 34.102X>
—~0.612X —5.143=0
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X0~ 11.344X8 + 1.173X7 + 43.407X° - 10.210X° - 63.954X* + 20.761X>
+27.684X2-5.518X -4.0=0
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—0.5864 -0.4120 2.2780

Figure 13. Mdbius cyclic monomers (k= 1) of 2,6-, 1,3-, 4,8-, and 5,7-polyazulenes and their characteristic polynomials where
the looped bond has the weight inicated

conduction
band
second polaron energy level (empty)
é first polaron energy level (half filled)
valence
band

Figure 14. Polaron energy levels relative to the conduction and valence bands generated via oxidative doping
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8=

Noninteracting MOs
& =90° (degenerate)

Coplanar interacting MOs
¢ = 0° (splitting)

Figure 15. Construction of HOMO — LUMO energy level
diagram for biazulene. The bottom part of the figure shows
two azulene molecules perpendicular to each other (¢ =90°)
and thus noninteracting. Their separate MOs are degener-
ate. When the dihedral angle ¢ is allowed to decrease to 0°,
the azulene MOs interact and splitting occurs as shown in the
upper right-hand part of the figure

The energy diagram for the construction of the
HOMO - LUMO for biazulene from a degenerate pair
of azulenes is shown in Fig. 15. If the pair of bonded
azulenes are oriented perpendicularly (dihedral angle,
¢=90°) to each other, their individual MOs are
noninteracting and are simply equal to the degenerate
MOs of the azulenes. When this pair of azulenes are made

0 0.3158
0.5428 ~0.0632 Q
0.2591 -0.2904
o601 0.4699
- 03355 01023
5 ~05109 Q
04773 (&) ~0.4004 (S)
~0.5549
02551
E,=133635 B 0.4773
04773
E,=27.1528 B

coplanar (dihedral angle, ¢ =0°), their MOs interact
according to the magnitude of the coefficients in
corresponding MOs of the azulene units (Fig. 16)
resulting in their splitting in accordance to the Jahn—Teller
theorem. For neutral biazulene this splitting to the first
approximation leads to little change in overall energy
because the destabilization energy of the higher antisym-
metric (A) MO is almost cancelled out by the stabilization
energy of the lower symmetric (S) MO. However, removal
of an electron to form a polaron from the A MO does lead to
more substantial stabilization due to splitting. Thus, in the
absence of severe steric repulsion, coplanarity (¢ =0°)
should be favored by ionization. When an electron is
removed from the top of the valence band of a conjugated
polymer creating a polaron, only partial delocalization over
several monomeric units occurs causing them to deform
structurally and form a localized electronic midgap states
(Fig. 14). This same model was proposed by Imamura and
coworkers for biphenyl.'*

Figures 17-20 shows what happens to the MOs in the
conversion various neutral polyazulenes to their polaron
midgap states. Our model assumes that the polaron region
of three azulene units is approximately coplanar (has
almost zero dihedral angle) and that the infinitely
extended polymer chain on either side of the polaron
region have dihedral angles approaching those given in
Table 2 that are characteristic of the corresponding
biazulenes. The first (lower) polaron energy level is given
by the HOMO energy of the corresponding triazulene
(Table 3). This energy level is half filled as in Fig. 14. The
second (upper) polaron energy level is given by
corresponding LUMO and is empty. If this more coplanar
(p ~0°) triazulene polaron was allowed to become
indefinitely extended, then the first polaron energy level
would approach that of corresponding coplanar poly-
azulene. Since polarons having an indeterminant number
of azulene units with smaller dihedral angles, they must
have HOMO values that range between these two extreme
values, both are listed in Figures 17-20.

—0.5405

0.4043 —0.1666

- 0.4520
—-0.3963 0.5020 —0.4070
0.1922 -0.3792
0.6938 0.3651
0.5757

E,=27.1364 B E,=27.1468 3 E.=27.1382 8

Figure 16. HOMO - LUMO eigenvalues/eigenvectors of azulene and eigenvalues of planar 2,6'-, 1,1'-, 4,4'-, 5,5’-biazulenes

Copyright © 2007 John Wiley & Sons, Ltd.
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For ¢ = 42.5°
LUMO =-0.3938p (lower edge of conduction band)
HOMO = 0.0981 (upper edge of valence band)

For ¢ = 0°
LUMO =-0.3910 to — 0.3944 (empty polaron level)
HOMO = 0 to 0.10508 (half filled polaron level)

- 039388

— — 0.3944B

0.1050B

0.0981B

Figure 17. Formation of a polaron region within 1,3-polyazulene of infinite extent

For ¢=31.45°
LUMO = - 0.1488p (lower edge of conduction band)
HOMO = 0.4773 (upper edge of valence band)

For @=0°
LUMO =-0.1144 to — 0.1353f (empty level)
HOMO = 0.4773 (half filled level)

| conduction band | —0.1488p

~0.1144B

0.4773p

' valence band l0-47735

Figure 18. Formation of a polaron region within 2,6-polyazulene of infinite extent

The removal of an electron from the HOMO of the
1,3-polyazulene to form a polaron region of three azulene
units which is composed of two azulenes, an allyl-like
radical, and a positively charged tropylium (Fig. 17). This
model corresponds exactly to the conclusion which
suggested that positive net charges of the oxidized states
are mainly localized in the seven membered rings and that
in the polaron state the charge and spin parts are in
separate rings of azulene unit of 1,3-polyazulene.®’ This
result gives for the 1,3-polyazulene a first polaron energy
level that is close to HOMO = 0.10508 which overlaps
with the valence band that is close to HOMO =0.09818
of the adjacent infinite twisted 1,3-polyazulene chains on
either side leading to polaron conduction under the
influence of electrical potential. In agreement with

Copyright © 2007 John Wiley & Sons, Ltd.

experiment,6’7 it is predicted that 1,3-polyazulene should
be capable of being made conductive by the polaron
mechanism by oxidative doping.

Similarly, the removal of an electron from the valence
band of the 2,6-polyazulene will form a polaron region of
three azulene units (Fig. 18) with a first polaron energy
level (HOMO = 0.4773 ) that coincides with the valence
band (HOMO = 0.4773p8) of the adjacent infinite twisted
2,6-polyazulene chains on either side. Since the HOMO
coefficients is zero for the 2,6-positions of azulene
(Fig. 16), to the first approximation the HOMO splitting
for 2,6’-biazulene is zero (Fig. 15). This results in the
HOMO of 2,6-polyazulene being unchanged regardless of
the dihedral angle or the number of its monomeric units.
Thus, it is predicted that 2,6-polyazulene should be also
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§ 1

For ¢="73.4°
LUMO =-0.2757p (lower edge of conduction band)
HOMO = 0.4616f (upper edge of valence band)

For ¢=0°
LUMO =0 to — 0.0952f3 (empty polaron level)
HOMO = 0.41421 to 0.4391f (half filled polaron level)

02757

— 00952

. 04391

046168

Figure 19. Formation of a polaron region within 4,8-polyazulene of infinite extent

3

For ¢=54.1°
LUMO = - 0.3874f (lower edge of conduction band)
HOMO = 0.3587p (upper edge of valence band)

For ¢=0°
LUMO = -0. 3775 to — 0.3781f (empty polaron level)
HOMO = 0.2950 to 0.33160 (half filled polaron level)

~038748

—_— 03781

— 0.33163

035878

Figure 20. Formation of a polaron region within 5,7-polyazulene of infinite extent

capable of being made conductive by the polaron
mechanism.

The removal of an electron from the HOMO of the
4,8-polyazulene (Fig. 19) or 5,7-polyazulene (Fig. 20) is
expected to form a polaron region of three azulene units.
The first (lower) polaron energy level is given by the
HOMO energy of the corresponding triazulene which is
half filled. The second (upper) polaron energy level is

Copyright © 2007 John Wiley & Sons, Ltd.

given by corresponding LUMO and is empty. The
triazulenene  first  polaron  energy levels for
4,8-polyazulene and 5,7-triazulene have values of
HOMO =0.4391 and 0.4391p8, respectively, which are
above the corresponding HOMO = 0.4616 and 0.3587p
for their twisted infinitely extended systems. Thus, there
exists a small gap (0.4616-0.3918 and 0.3581-0.33160)
between the first polaron energy levels and the valence
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Table 3. HOMO - LUMO of planar terazulenes

Triazulene HOMO (B) LUMO (B)
2,6- 0.4773 —0.1353
1,3- 0.1050 —0.3944
4,8- 0.4391 —0.0.952
5,7- 0.3316 —0.3781

bands of the extended polymer branches, and we predict
that polaron conduction for the 4,8- and 5,7- polyazulenes
to be more difficult than for 1,3- and 2,6-polyazulenes. If
these more coplanar (¢ =0°) triazulene polaron regions
are allowed to become infinitely extended, then the first
polaron energy level increases to that of corresponding
coplanar polyazulene, that is, from 0.4391 to 0.41421 and
from 0.3316 to 0.29508, respectively, and the respective
gaps will increase.

In summary, our model for polaron conduction in
polyazulenes deduces from MO symmetry that the
polaron region is almost coplanar and is delocalized
over approximately 3 azulene units. This hypothetical
limit allows us to estimate the polaron midgap energy
levels from the HOMO — LUMO of the corresponding
triazulenes. This presupposes that conjugative interaction
with the twisted polyazulene branches is only a small
perturbation. That this is a reasonable model is
corroborated by allowing the polaron region to hypothe-
tically expand to infinity while still being bounded by
infinite twisted polyazulene branches. Since the density of
states is independent of boundary conditions, this sets the
upper hypothetical limit for the first polaron energy level
to that of the corresponding coplanar infinite polyazu-
lenes. Along a similar line of reasoning, we predict that
1,3-polyazulene will be more easily made conducting by
a polaron mechanism than the 2,6-, 4,8-, and
5,7-polyazulenes by reductive doping.

CONCLUSIONS

The polyazulenes of this study have significant gaps
between the valence band and conduction band and are
not expected to be intrinsically conductive. However, they
can be made conductive via doping where the conduction
mechanism is via polaron movement under the appli-
cation of electrical potential because the gap between the
valence band and the first polaron energy level is much

Copyright © 2007 John Wiley & Sons, Ltd.

smaller. It is predicted that the 1,3- and 2,6-polyazulenes
will be more conductive by p-doping than the 4,8- and
5,7-polyazulenes. The predicted conduction of 1,3-
polyazulene via the polaron mechanism is in agreement
with experimental results.® HMO, MM2, and symmetry
calculations of biazulenes and triazulenes were exploited
in the analysis and modeling of the potential conductivity
of polyazulenes.
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